

MERI College of Engineering and Technology (MERI - CET)

Lesson Plan

Name of the Faculty	: Mr. Pardeep
Discipline	: Mechanical Engineering
Semester	: 4 th
Subject	: Applied Thermodynamics (PCC-ME-202G)
Lesson Plan Duration	: 15 Weeks (from May 2021 to August 2021)

** Work Load (Lecture) per week (in hours): Lectures-04, Practicals-01

Week	x Theory		Practical		
	Lecture Day	Topic (including assignment/test)	Practical day	Торіс	
1 st	1 st	Introduction to solid, liquid and gaseous fuels.	1 st	To study low pressure boilers and their accessories and mountings.	
	2 nd	Stoichiometry.			
	3 rd	Exhaust gas analysis.			
	4 th	First law analysis of combustion reactions.			
2 nd	5 th	Heat calculations using enthalpy tables.	2 nd	To study high pressure boilers and their accessories and mountings	
	6 th	Adiabatic flame Temperature.		accessories and mountings.	
	7 th	Chemical equilibrium.			
	8 th	Equilibrium composition calculations using free energy.			
3 rd	9 th	Vapor power cycles.	3 rd	To prepare heat balance sheet for given boiler.	
	10 th	Rankine cycle with superheat.]		
	11 th	Reheat and regeneration.]		

MERI College of Engineering and Technology (MERI - CET) (MERI - CET)

	1.2th	Everay analysis		
	12			
4 th	13 th	Supercritical and ultra super-critical Rankine cycle.	4 th	To study the working of impulse and reaction steam turbines.
	14 th	Gas power cycles.	1	
	15 th	Air standard Otto, Diesel and Dual cycles.		
	16 th	Air standard Brayton cycle.		
5 th	17 th	Effect of reheat, regeneration and intercooling-	5 th	To find dryness fraction of steam by separating and throttling calorimeter.
	18 th	Combined gas and vapor power cycles.		
	19 th	Vapor compression refrigeration cycles.		
	20 th	Refrigerants and their properties.	1	
6 th	21 st	Properties of dry and wet air.	6 th	To find power out put & efficiency of a steam turbine.
	22 nd	Use of pschyrometric chart.		
	23 rd	Basics of compressible flow. Stagnation properties.		
	24 th	Isentropic flow of a perfect gas through a nozzle.		
7 th	25 th	Choked flow,	7 th	To find the condenser efficiencies.
	26 th	Subsonic and supersonic flows- normal shocks.		
	27 th	Use of ideal gas tables for isentropic flow.]	
	28 th	Normal shock flow.		
8 th	29 th	Flow of steam through nozzle.	8 th	To study and find volumetric efficiency of a

MERI College of Engineering and Technology (MERI - CET)

	30 th	Flow of refrigerant through nozzle.		reciprocating air
	31 st	Super saturation compressible flow in diffusers.		compressor.
	32 nd	Efficiency of nozzle and diffuser.		
9 th	33 rd	Reciprocating compressors,	9 th	To study cooling tower and find its efficiency.
	34 th	Numericals		
	35 th	Staging of reciprocating compressors.		
	36 th	Numericals.		
10 th	37 th	Optimal stage pressure ratio.	10 th	To find calorific value of a
	38 th	Numericals.		sample of fuel using Bomb calorimeter.
	39 th	Effect of intercooling.		
	40 th	Numericals.		
11 th	41 st	Minimum work for multistage reciprocating compressors.	11 th	Calibration of Thermometers and
	42 nd	Numericals		pressure gauges.
	43 rd	Numericals		
	44 th	Analysis of steam turbines.		
12 th	45 th	Numericals	12^{th}	Revision.
	46 th	Velocity Compounding of Steam Turbines.		
	47 th	Pressure compounding of steam turbines.		
	48 th	Numericals.		
13 th	49 th	Numericals.	13 th	Revision.
	50 th	Revision		
	51 st	Revision.		
	52 nd	Revision.		
14 th	53 rd	Revision	14^{th}	Revision.
	54 th	Revision		
	55 th	Revision.		

MERI College of Engineering and Technology (MERI - CET)

	56 th	Revision.		
15^{th}	57 th	Revision	15 th	Revision.
	58 th	Revision		
	59 th	Revision.		
	60 th	Revision.		